Semi-evenly partite star-factorization of symmetric complete tripartite digraphs
نویسنده
چکیده
We show that necessary and sufficient conditions for the existence of a semi-evenly partite star factorization of the symmetric complete tripartite digraph K~I,n2,n3 are (i) k is even, k 2 4 and (ii) nl = n2 = n3 == 0 (mod k(k -1)/3) for k == 0 (mod 6) and nl = n2 = n3 == 0 (mod k(k 1)) for k == 2,4 (mod 6).
منابع مشابه
Evenly partite bigraph-factorization of symmetric complete tripartite digraphs
We show that a necessary and sufficient condition for the existence of a Kp ,2q factorization of the symmetric complete tripartite digraph K~1,n2,n3 is (i) ni = n2 = n3 == 0 (mod p) for p = q, (ii) ni = n2 = n3 == 0 (mod dp'q'(p' + 2q')) for p =Iq and p' odd, (iii) ni = n2 = n3 == 0 (mod dp'q'(p' + 2q')/2) for p =Iq and p' even, where d = (p, q), p' = p/d, q' = q/d.
متن کاملP3-factorization of complete bipartite symmetric digraphs
In path factorization, H. Wang [1] gives the necessary and sufficient conditions for the existence of P_k-factorization of a complete bipartite graph for k, an even integer. Further, Beiling Du [2] extended the work of H. Wang, and studied the P_2k-factorization of complete bipartite multigraph. For odd value of k the work on factorization was done by a number of researchers. P_3-factorization ...
متن کاملChromaticity of Complete Tripartite Graphs With Certain Star or Matching Deleted
Let P (G, λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted G ∼ H, if P (G, λ) = P (H, λ). We write [G] = {H|H ∼ G}. If [G] = {G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs with 6n vertices according to the number of 7-independent partitions of G. Using these re...
متن کاملBigraph-factorization of symmetric complete bipartite multi-digraphs
We show that a necessary and sufficient condition for the existence of a Kp,q factorization of the symmetric complete bipartite multi-digraph )"K:n n is (i) m = n == 0 (mod p) for p = q and (ii) m = n == a (mod d(p' + q')p'q'/e) for p =f. q, where d = (p,q), p' = p/d, q' = q/d, e = ()..,p'q').
متن کاملInternally Fair Factorizations and Internally Fair Holey Factorizations with Prescribed Regularity
Let G be a multipartite multigraph without loops. Then G is said to be internally fair if its edges are shared as evenly as possible among all pairs of its partite sets. An internally fair factorization of G is an edge-decomposition of G into internally fair regular spanning subgraphs. A holey factor of G is a regular subgraph spanning all vertices but one partite set. An internally fair holey ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 20 شماره
صفحات -
تاریخ انتشار 1999